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1 Introduction

Inspired by a stack exchange article that I was too lazy to recover, I sought to
show the following;:

Suppose C(«) is a Hermitian positive-definite matrix for every value of «
and that the parameter a is such that the eigenvalues and eigenvectors may
be thought of as smooth functions of « i.e. their first partial derivative with
respect to a exists everywhere that is relevant to the problem. Then
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2 Derivation

For any value of o, we may write
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where the \; are the eigenvalues of C. Then clearly
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Note that we may write C' as
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where v; () are the eigenvectors of C(«). From now on I will omit the argument
and it should just be understood that everything here is implicitly a function of
«. Similarly, we may write
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Taking the derivative of C' with respect to «, we have
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Meanwhile, since

UJU]' = 52']',
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From equations 5, we have
tot = Lot
v,C7" = )\—ivi.

By combining Equations 6 and 9 we get
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Finally, combining Equations 3, 10, and 12, we have
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