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1 Introduction

The point of this document is to expose why singular value decomposition (SVD)
tends to produce such sparse respresentations of matrices (other than that,
obviously, you have reduced NM numbers to min(N,M) numbers. The key
turns out that singular vectors of a matrix M solve a least-squares objective
function.

2 Approximating a Matrix

Suppose we have a unit-length vector, v, i.e v†v = 1, and we would like to know
which unit-length vector u best approximates a matrix, M, like so:

M ≈ σuv† (1)

for some value, σ. Best is of course a user-defined concept, so let’s just use
least-squares for convenience. Since M is a matrix, it looks a little funny, but
here it is

L = tr
(
(M− σuv†)(M† − σ∗vu†)

)
(2)

It turns out this is satisfied when

σu = Mv (3)

|σ|2 = v†M†Mv (4)

This second equation just ensures u is unit-norm. If v transforms to a large
vector under M, then σ will be large in amplitude, and the approximation will
be tight compared to a vector that does not transform to as large a vector as v.
Note that we could flip this around and apply a similar derivation to v given u.

3 What does this have to do with SVD?

It turns out that if two vectors u and v satisfy σu = Mv and σv = M†u, then
they are left- and right-singular vectors of M, respectively. So given the above
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derivation, it is no surprise that SVD works so well to approximate matrices. It
is a successive pairing of vectors that produce finer and finer approximations of
M when their outer products are summed (assuming singular values have been
sorted largest to smallest).

An important fact about SVD that is not apparent in the derivation of
a single pair of vectors u and v above is that you can always find a set of
orthogonal singular vectors (i.e. a unitary matrix U whose columns are the
left-singular vectors and similar for the right-singular ones). This results in
something exceptionally sparse since if you take any vectors v1 and v2 and
produce u1 = Mv1 and u2 = Mv2, you are not guaranteed that u1 and u2 are
orthogonal to one another. If u1 and u2 are not orthogonal (and similar for the
v’s), then it is not clear that each successive pairing makes the approximation
better and better. The fact that an SVD like this always exists is a great boon.
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