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1 Introduction

This is a short note on how to get to the covariance matrix for a real-valued
multivariate normal distribution that was constructed from an initially complex
one. We start with

C = 〈zz†〉 (1)

Γ = 〈zzT 〉 (2)

where I’ve implicitly assumed mean 0 or equivalently that the mean is subtracted
off in the definition of z. This is just to make the notation a little less messy, but
the final answer doesn’t depend on them so I’ve decided to omit them. These two
matrices (along with the implicit mean), define a multivariate complex gaussian
random variable.

To calculate the covariance matrix of its individual components, we form
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These then form a block covariance matrix, K, for the real-valued vector, x, as
follows
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