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1 Problem Statement

We concern ourselves with computing the probability density function for a sum
of N exponential random variables with n distinct means βj , where n ≤ N . If
n < N , then there are some βj that have a multiplicity greater than 1. In other
words, we allow for degeneracy. We denote the multiplicity of each βj as mj .

Let us denote the characteristic function of a random variable, X, as

gX(t) =

∫ +∞

−∞
fX(x)eitxdx (1)

where fX(x) is the probability density function (PDF) for X. In other words,
gX(t) is the Fourier transform of fX(x). This means that equation 1 can be
inverted with

fX(x) =
1

2π

∫ +∞

−∞
gX(t)e−itxdt (2)

2 A Single Exponential Random Variable

The PDF for an exponential random variable with mean β has the form

fX(x) =
1

β
e−x/β (3)

The calculation will be slightly less messy if we consider the parameter

λ =
1

β

in which case equation 3 looks like

fX(x) = λe−λx (4)

We will refer to λ as the ”rate constant.” The characteristic function of an
exponential random variable with rate constant λ has the form

gX(t) =
λ

λ− it
=

iλ

iλ+ t
(5)
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Note that if we consider t as a complex variable, then this function has a pole
at

t = −iλ

3 Calculating the Sum PDF

To calculate the PDF of a sum of random variables, one must convolve their
respective PDFs. By the convolution theorem, the resulting characteristic func-
tion is the product of the respective characteristic functions of the random
variables. Our method is to calculate the characteristic function of the sum and
then use an inverse Fourier transform (equation 2) to calculate the desired PDF.

Let us define the variable

Y =

N∑
k=1

Xk

where each Xk is exponential and there may be degeneracy in the means as
discussed in the problem statement. Then the characteristic function of Y ,
using equation 5, is

gY (t) =

N∏
k=1

iλk
iλk + t

Using the multiplicities, we may write this as

gY (t) =

n∏
j=1

(
iλj

iλj + t

)mj

= iN
n∏
j=1

(
λj

iλj + 1

)mj

(6)

Applying equation 2, we see that the desired PDF is found by calculating

fY (y) =
iN

2π

∫ +∞

−∞
dte−ity

n∏
j=1

(
λj

iλj + t

)mj

(7)

This integral is evaluated simply using contour integration techniques. Consider
t as a complex variable. Since for all j

λj > 0

then all of the poles of the integrand in equation 7 lie on the negative imaginary
axis. Now consider when y > 0. Then consider a counter-clockwise infinite
semi-circle contour enclosing the lower half of the complex plane. Temporarily
dropping the integrand for ease of notation, we may write∮

C

= −
∫ +∞

−∞
+

∫
arc

(8)

where the minus sign comes in because of the counter-clockwise sense of
the contour. The integrand satisfies Jordan’s lemma[1] in the lower half-plane.
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This mean’s the integral over the arc vanishes. The integral over R is the one we
desire, and the contour integral may be evaluated using the method of residues.
This essentially states[1] for a complex function, f(z),∮

C

f(z)dz =

n∑
j=1

∮
Cj

f(z)dz (9)

where the Cj enclose each of the poles of the integrand in a counter-clockwise
sense. The integral over each pole may be evaluated with Cauchy’s integral
formula, whose generalization[1] states that for an analytic function h(z) on a
closed contour C, for any point z0 interior to C,

h(m)(z0) =
m!

2πi

∮
C

h(z)

(z − z0)m+1
dz (10)

where h(m)(z0) is the mth derivative of h evaluated at z0.
To proceed, we evaluate each residue for the pole of order mj one at a time

using this formula, setting

hj(t) =
1

2π
(iλj + t)mje−itygY (t) (11)

so that ∮
C

= 2πi

n∑
j=1

1

(mj − 1)!
h
(mj−1)
j (−iλj) (12)

which may be written∮
C

= iN+1
n∑
j=1

λ
mj

j

(mj − 1)!

(
d

dt

)mj−1(
e−ity

∏
l 6=j

(
λl

iλl + t

)ml
)∣∣∣∣

t=−iλj

(13)

We can expand the derivatives using the generalization of the product rule.
We split the term into two factors: the exponential factor, and the product of
rational functions, obtaining∮
C

= iN+1
n∑
j=1

λ
mj

j

(mj − 1)!
e−ity

mj−1∑
m=0

[(
mj − 1

m

)
(−iy)mj−m−1 d

m

dtm

(∏
l 6=j

(
λl

iλl + t

)ml
)]∣∣∣∣

t=−iλj

(14)
Now we need to collect our factors of i. When the evaluation is made at t =
−iλj , a factor of i can be taken out for each factor of iλl + t. There are
N − mj such factors before differentiation, and differentiation adds m such
factors. Pulling all these out and remembering the factors attached to the
powers of y we have a total factor of

(−i)N−mj+m+mj−m−1 = (−i)N−1
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Combining these with the factors of i out front gives∮
C

= −
n∑
j=1

mj−1∑
m=0

λ
mj

j

(mj −m− 1)!m!
ymj−m−1e−λjyΨmj(−λj) (15)

where

Ψmj(t) =
dm

dtm

[∏
l 6=j

(
λl

λl + t

)ml
]

Recalling equation 8, we have, for y > 0,

fY (y) =

n∑
j=1

mj−1∑
m=0

λ
mj

j

(mj −m− 1)!m!
ymj−m−1e−λjyΨmj(−λj) (16)

For y < 0, we instead choose a counter-clockwise infinite semicircle contour
enclosing the upper half-plane. The integral over the arc vanishes the same as
before, but the contour encloses no poles. This means that The contour integral
evaluates to zero, and so also the integral over the real line evaluates to zero.
Thus, we summarize this general result using a Heavisde step function, θ(y)

fY (y) = θ(y)

n∑
j=1

mj−1∑
m=0

λ
mj

j

(mj −m− 1)!m!
ymj−m−1e−λjyΨmj(−λj) (17)

This makes sense, since we are evaluating the density for a sum of non-negative
random variables.

Let us now consider two simpler cases. First, let us consider the case where
there is only one distinct rate constant. Then the products and sums over j are
only over one term. In equation 13, the product over l 6= j is just set equal to
1, and the derivatives only hit the exponential term, so the generalized product
rule does not follow through. We are left with

fY (y) =
λNyN−1

(N − 1)!
e−λyθ(y) (18)

which is the Erlang distribution that we were already familiar with.
Second, let us consider when all the rate constants are distinct. Then mj = 1

for all j. All the poles are simple poles, so all the derivatives are of 0th order.
The result is then

fY (y) = θ(y)

N∑
j=1

λje
−λjy

∏
l 6=j

λl
λl − λj

(19)

4 Calculation of the Means and Variances

We will calculate the means and variances separately for each case.
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4.1 The Fully Degenerate Case

We begin from equation 18. The mean is given by

E[Y ] =

∫ ∞
0

(λy)N

(N − 1)!
e−λydy =

N

λ
(20)

The second moment is given by

E[Y 2] =

∫ ∞
0

λNyN+1

(N − 1)!
e−λydy =

N(N + 1)

λ2
(21)

Therefore the variance is given by

E[Y 2]− E[Y ]2 =
N

λ2
(22)

4.2 The Nondegenerate Case

Now we begin with equation 19. The integrations are simple. The results are
as follows.

E[Y ] =

N∑
j=1

1

λj

∏
l 6=j

λl
λl − λj

(23)

E[Y 2] =

N∑
j=1

2

λ2j

∏
l 6=j

λl
λl − λj

(24)

So the variance is given by

E[Y 2]−E[Y ]2 =

N∑
j=1

2

λ2j

∏
l 6=j

λl
λl − λj

−
N∑

p=1,q=1

1

λpλq

∏
m 6=p,n 6=q

λmλn
(λm − λp)(λn − λq)

(25)
where all possible pairs of p and q must be evaluated, and all possible pairs of
m and n must likewise be evaluated for each pair of p and q.

4.3 The General Case

We must now start with equation 17. The results from integration are

E[Y ] =

n∑
j=1

mj−1∑
m=0

(mj −m)λm−1j

m!
Ψmj(−λj) (26)

E[Y 2] =

n∑
j=1

mj−1∑
m=0

λm−2j

(mj −m+ 1)(mj −m)

m!
Ψmj(−λj) (27)

The full expression for the variance is cumbersome and does not simplify further.
Simply calculate E[Y 2] and E[Y ] as above and use the expression E[Y 2] −
E[Y ]2. A quick inspection will show that this case easily simplifies down to the
nondegenerate case if mj = 1 for all j.
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5 Convergence to a Gaussian Distribution

To prove convergence to a Gaussian distribution in the large N limit, we will
make use of the Lévy continuity theorem, which states that if a sequence of char-
acteristic functions of a random sequence converges pointwise to the character-
istic function of a given random variable, then the random sequence converges
in distribution to that given random variable.

Let us consider our N exponential random variables, Xi, with rate constants,
{λj}. Let us consider the random variables defined by

Zj =
(Xj − µj)√

Nσj
=
λjXj − 1√

N
(28)

We will show that the variable defined by

Z =

N∑
j=1

Zj (29)

converges to a standard normal random variable (zero-mean, unit width, Gaus-
sian) in the large N limit.

The characteristic function of Zj , φZj (t), is given by

φZj
(t) = E[eitZj ]Zj

=

∫ ∞
−∞

dzje
itzjfZj

(zj). (30)

We can express this as an expectation over Xj like so:

φZj
(t) =

∫ ∞
−∞

dxje
it(λjxj−1)/

√
NfXj (xj) = e−it/

√
NφXj

(
λjt√
N

)
(31)

Inspecting equation 5, we see that this is

φZj (t) = e−it/
√
N 1

1− it√
N

(32)

The characteristic function of Z is the product of these characteristic functions.

φZ(t) = e−it
√
N

(
1

1− it√
N

)N
(33)

The logarithm of this function will be easier to work with.

log(φZ(t)) = −i
√
Nt−N log

(
1− it√

N

)
(34)

The second term can be expanded in a power series with a radius of convergence
of
√
N . Therefore, in the large N limit, this series converges everywhere. This

gives

log(φZ(t)) = −i
√
Nt+N

∞∑
k=0

(it/
√
N)k+1

k + 1
(35)
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The linear term in the power series exactly cancels the first term in the expres-
sion that came from the exponential, giving

log(φZ(t)) = −1

2
t2 +O(|t3|/

√
N) (36)

Then, in the limit as N tends to infinity, the higher order terms disappear,
giving (undoing the log),

lim
N→∞

φZ(t) = e−t
2/2 (37)

which is the characteristic function of a standard normal random variable, as
desired.

5.1 An Alternative Proof not Involving the Complex Log-
arithm

In order to avoid confusions about branch cuts, below is a development that
keeps things in the exponent. Let us start with equation 33. Consider the
complex number defined by

w = 1− it√
N
. (38)

Since t is real-valued, w is always in the right-half of the complex plane. We
may rewrite w in the following way using the principal branch of the arctangent:

w =

√
1 +

t2

N
e−i arctan(t/

√
N) (39)

Notice that equation 33 may now be written

φZ(t) = e−it
√
Nw−N , (40)

which may be further expanded to

φZ(t) = e−it
√
N 1√

(1 + t2

N )N
eiN arctan(t/

√
N) (41)

Given a fixed t, for sufficiently large N , the following approximation holds well:

arctan(t/
√
N) ≈ t√

N
(42)

Ultimately we will take the limit as N tends to infinity to show convergence.
If we use the above approximation, then the two exponentials in equation 41
cancel exactly, leaving

lim
N→∞

φZ(t) = lim
N→∞

1√
(1 + t2

N )N
(43)

This is none other than

lim
N→∞

φZ(t) =
√
e−t2 = e−t

2/2 (44)

exactly as desired.
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5.2 Rate of Convergence
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