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1 Introduction

The purpose of this document is to expose some basic facts about Gaussian
linear models.

2 Definitions

Suppose we have some data, denoted with the vector d, and a linear model for
the data with Gaussian noise,

d = Ax+ n, (1)

where n is a zero-mean Gaussian noise vector, x is a vector holding the pa-
rameters of the linear model (the coefficients), and A is a matrix holding the
predictors (basis functions). Given x, A, and the noise covariance, N , and some
prior information I, we have

d|x,A,N, I ∼ N (Ax,N) (2)

i.e. the data would be normally distributed about a mean Ax with covariance
N .

Generally we are interested in the case where x is unknown, which is related
to d|a,A,N, I via Bayes’ theorem:

P (x|d,A,N, I) = P (d|x,A,N, I)P (x|A,N, I))
P (d|A,N, I)

. (3)

For the remainder of this document, we will take A, N , and I as fixed prior
information, and omit conditioning on them in the notation.

Equation 3 implies a need for a prior distribution, P (x). In theory, this prior
can be anything, but in practice it encodes a particular state of knowledge and
therefore the choice of prior has an effect on the outcome of the inference. We
will focus on Gaussian priors, eschewing discussions of appropriateness to other
works. That is to say, a priori,

x ∼ N (µ,C) (4)
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3 Properties of the Posterior

Inferences about x given d are captured by the probability distribution of x|d.
First, what is its form? By multiplying P (d|x) and P (x), which are two Gaussian
densities, we can see by examining the exponent that the resulting density must
be Gaussian. What are its parameters? The terms in the exponent are, for real
vectors,1

− 1

2

(
(d−Ax)

T
N−1 (d−Ax) + (x− µ)

T
C−1 (x− µ)

)
=

− 1

2

(
xT

(
ATN−1A+ C−1

)
x+ a(x) + b

)
(5)

where a(x) is a linear function of x, and b is a constant. Their exact forms
are not important because all we need to do is figure out what the covariance
and mean of our new Gaussian are, which can be determined through a variety
of methods, some more painful than others. Importantly, we can read off the
posterior covariance, C ′, from Equation 5:

C ′−1 = ATN−1A+ C−1. (6)

To get the mean, we take the gradient with respect to x of the left side of
Equation 5 to obtain linear equation that defines the location of the extremum
(equivalent to the mean). I’m going to skip over formalities, but in general, one
should break this down component-wise and verify the following relationship:

C ′−1µ′ = ATN−1d+ C−1µ (7)

where µ′ is the posterior mean. This gives us everything we need to know ana-
lytically about the posterior. If this is the extent of the model, then the problem
has a fully analytic solution and this is the end of the journey up to explorations
of particular instances of the quantities involved. However, often Gaussian lin-
ear models appear in larger hierarchical models as conditional distributions of
joint posteriors that are not necessarily easily understood analytically. In this
case it is useful to know how to generate samples from Gaussian distributions,
as part of e.g. a Gibbs sampler.

4 Generating Gaussian samples

In general, if µ′ and C ′ are already calculated, one may draw a standard normal
sample, ω, and form a sample, s, via

s = µ′ + C ′1/2ω (8)

where C ′1/2 is any matrix, M , satisfying MMT = C ′. A common choice is the
Cholesky decomposition for its numerical properties but theoretically this is not
strictly necessary.

1which is a space we can always choose to work in when faced with complex vectors – not
sure what happens with e.g. quaternions
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In typical sampling applications, C and N are easily invertible, but C ′−1

is not easily invertible to obtain C. Furthermore, it is also typical in Gibbs
sampling applications for A or C to be a function of other model parameters
not included in x, meaning an explicit inversion of C ′−1 may have to happen for
every new sample to use Equation 8 naively. This is often slow and numerically
unpredictable compared to various alternatives. More often, we take advantage
of the fact that C ′−1 is easily calculated and instead use a fast linear solver2 to
instead solve a linear equation for s. For example, one could solve

C ′−1s = C ′−1µ′ + C ′−1/2ω, (9)

which can be written(
ATN−1A+ C−1

)
s = ATN−1d+ C−1µ+ C ′−1/2ω. (10)

Now, we can play one more trick with the fluctuation term (the one involving
ω), to get an equivalent set of samples. In particular, we can instead solve(

ATN−1A+ C−1
)
s = ATN−1d+ C−1µ+ATN−1/2ω0 + C−1/2ω1 (11)

where ω0 and ω1 are standard normal random vectors. This is usually preferable
because, for example, recalculating ATN−1/2 for each sample where A changes

is generally easier than recalculating
(
ATN−1A+ C−1

)1/2
. To see why this

works, first see that
C ′−1⟨s⟩ = C ′−1µ′ (12)

i.e.
⟨s⟩ = µ′. (13)

where this expectation is over realizations of ω0 and ω1. Then see that the
fluctuation terms obey

Cov
(
ATN−1/2ω0 + C−1/2ω1, A

TN−1/2ω0 + C−1/2ω1

)
= C ′−1 (14)

implying
Cov

(
C ′−1s, C ′−1s

)
= C ′−1Cov (s, s)C ′−1 = C ′−1 (15)

further implying
Cov (s, s) = C ′. (16)

In some instances, further speedups can be made if C ′−1 is sparse, or can
be made to be sparse with preconditioning (rumor is that this is usually done
by finding an approximate inverse that is easy to compute or does not need to
be recomputed ever).

2for example, NUMPY’s linear algebra package wraps LAPACK, which is a well-understood
high-performing FORTRAN-based linear algebra package
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5 Model selection

Consider two linear models, A1 and A2. So long as we have proper priors for
the parameters of these models, we can compare the marginal likelihoods of
the models fully analytically. If we are willing to assign prior probabilities to
the models, we can perform Bayesian model selection. In particular, omitting a
bunch of things for brevity, and defining for the ith model

C ′
i ≡ N +AiCiA

T
i (17)

where Ci is the prior covariance for the ith model. Let µi be the prior mean for
the ith model. Then define

χ2
i ≡ (d−Aiµi)

T
C ′−1

i (d−Aiµi) . (18)

This lets us see that

log
P (A1|d)
P (A2|d)

= −1

2

(
log

|C ′
1|

|C ′
2|

+ χ2
1 − χ2

2

)
. (19)

Roughly speaking, this will favor model 1 if it has smaller volume and smaller
squared deviations with respect to the prior parameters µ1 and C1 compared to
the equivalent quantities involving model 2.
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