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1 Introduction

The point of this note is to relate the eigenspectrum of the “realification” of a
complex matrix, A, to the eigenspectrum of A. By realification, I mean that if

A = ℜ(A) + iℑ(A) (1)

then the realified form is the block matrix

A′ =

(
ℜ(A) −ℑ(A)
ℑ(A) ℜ(A)

)
. (2)

This is a useful form since this preserves the complex algebra of A in the sense
that if

z = ℜ(z) + iℑ(z) (3)

and we define a block vector x,

x =

(
ℜ(z)
ℑ(z)

)
, (4)

then

A′x =

(
ℜ(Az)
ℑ(Az).

)
(5)

2 Useful Properties of Determinants

Now I go over some useful properties of determinants. First, it can be shown
that for some block matrix, B,

B =

(
C D
0 E

)
(6)

has determinant
det(B) = det(C) det(E). (7)

I will also make use of the fact that the determinant of a product of matrices is
equal to the product of the determinants. We also make use of the fact that

det(M∗) = det(M†) = det(M)∗ (8)
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3 Analyzing the Eigenspectrum

The eigenspectrum of an operator is determined by its characteristic polynomial,
PA(λ) which is generated by

PA(λ) = det(A− λI) =

N∏
j=1

(λ− λj). (9)

where λj is the jth eigenvalue. Now we show that

PA′(λ) = PA(λ)PA∗(λ). (10)

PA′(λ) = det

(
ℜ(A)− λI −ℑ(A)

ℑ(A) ℜ(A)− λI

)
= det

[(
I 0

−iI I

)(
ℜ(A)− λI −ℑ(A)

ℑ(A) ℜ(A)− λI

)(
I 0
iI I

)]
= det

(
ℜ(A)− iℑ(A)− λI −ℑ(A)

0 ℜ(A) + iℑ(A)− λI

)
= det

(
A∗ − λI −ℑ(A)

0 A− λI

)
= PA(λ)PA∗(λ)

(11)

where in the second equality, I have used the fact that the two matrices on
either side of A′ have unit determinant, in the third equality I have carried the
matrix multiplication out, in the fourth equality I have just rewritten the line
above, and in the final equality I have used the definition of the characteristic
polynomial as well as the triangular block matrix determinant property from
the previous section. Now note that if

Az = λz, (12)

then
A∗z∗ = λ∗z∗, (13)

which means that the eigenvectors of A∗ are the complex conjugates of the
eigenvectors of A, with corresponding eigenvalues that are also complex conju-
gates of the ones for A. Combined with the result above, this means that the
2N eigenvalues of A′ are the N eigenvalues of A and their complex conjugates.

4 Some Applications

Suppose Z is a circular complex Gaussian random vector, with covariance matrix
C = ⟨ZZ†⟩. Then suppose

X =

(
ℜ(Z)
ℑ(Z)

)
. (14)

2



It can be shown that the covariance matrix of X is

K = ⟨XXT⟩ = 1

2
C′ (15)

where C′ is the realification of C. Since C is Hermitian, all of its eigenvalues
are real. Since it is positive-definite,1 all of these eigenvalues are positive. This
means that √

det(2πK) =
√
det(πC′)

=

√√√√ N∏
j=1

(πλj)2

=
√
det(πC)2

= det(πC)

(16)

which explains where the factor of 2 and the square root go in the prefactor
when writing the pdf of a circular complex Gaussian random vector in complex
notation as opposed to real/imaginary notation.2

Now suppose we are interested in calculating
√

det(I− 2itKA′) for some
hermitian matrix A (A′ being its realification). This comes up in the study
of the thermal noise error estimates in 21-cm power spectrum measurements.
Since 2KA′ is the realification of CA, we have

√
det(I− 2itKA′) =

√√√√ N∏
j=1

(1− itλj)(1− itλ∗
j ) (17)

where λj is the jth eigenvalue of the complex, potentially non-hermitian matrix
CA. The advantage to this expression is that if all the eigenvalues are real,
which I will show is true if A is Hermitian and invertible, then it tells us which
branch of the complex square root function to be on automatically. This helps
us calculate the characteristic function of the marginal pdf of the thermal noise
fluctuations on a power spectrum measurement in terms of the covariance and
some “selection matrix” A that tells us which bandpowers we are combining
incoherently.

Now, I got this proof from stack exchange on a post by Martin Argerami.3

Suppose C is hermitian and positive definite, and A is hermitian. Then we
may write C = M†M for some matrix, M, e.g. by Cholesky decomposition.
Then we can use the fact that M†MA has the same eigenvalues as the matrix
MAM†, which comes from the fact that

PQR(λ) = PRQ(λ) (18)

1If it is only positive semi-definite, then there are degenerate subspaces than can be taken
out in a well-defined way to make it positive definite on the non-degenerate subspace.

2The factor of 2 in the exponent essentially goes away because of the factor of 2 in 15. A
more detailed accounting exists in a book by Gallagher called ”Stochastic Processes: Theory
for Applications.”

3https://math.stackexchange.com/questions/134884/eigenvalues-of-product-of-two-
hermitian-matrices
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i.e. we can swap the order of a matrix multiply and obtain the same characteris-
tic polynomial and therefore the same eigenvalues (I believe this relies on Q and
R being invertible, which we’ve assumed). This is clearly a Hermitian matrix
and therefore has real eigenvalues, though it may not be positive-definite.
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