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1 Introduction

This document is just a quick proof showing that circulant matrices are dia-
ganalized by Fourier modes. I’m thinking of square, full rank matrices in my
mind, but I don’t think the details of this proof rely on those assumptions.
The wikipedia article notes that this is basically just the discrete convolution
theorem.

A circulant matrix is a Toeplitz matrix:

Ai+1,j+1 = Ai,j (1)

Furthermore and N ×N circulant matrix whose top left corner is A0,0 satisfies

Ai,N−1 = Ai+1,0 (2)

These two properties make a matrix whose rows (or columns) “circulate,” hence
the name:

A =


A0,0 A0,1, A0,2, ..., A0,N−1

A0,N−1 A0,0, A0,1, ..., A0,N−2

...
. . .

. . .
. . .

...
A0,1 ... A0,0

 (3)

We do the proof in one direction, and then the other. We finish with some
practical results.

2 Matrices diagonalized by Fourier modes are
circulant

Suppose a matrix is diagonalized by Fourier modes:

A = FΛF † (4)

where

Fj,k =
e2πi

jk
N

√
N

. (5)
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and Λ is a diagonal matrix containing the eigenvalues. This means that

(F †)j,k = F ∗
k,j =

e−2πi jk
N

√
N

, (6)

which in turn means that

Aj,l =
∑
k

λk
e2πi

(j−l)k
N

N
. (7)

From this expression, we can see directly that Aj+1,l+1 = Aj,l. Then, let’s show
some cool modular arithmetic. Note that

(j − (N − 1))k

N
=

(j + 1)k

N
− k, (8)

so

Aj,N−1 =
∑
k

λk
e2πi(k+

(j+1)k
N )

N
, (9)

but
e2πik = 1 (10)

for integer k. This leaves
Aj,N−1 = Aj+1,0. (11)

Both our properties have been satisfied, so we’re done with this direction.

3 A circulant matrix has Fourier modes as eigen-
vectors

Now we go the other direction. To begin, let us define the top row of A as the
(row) vector vT . We can then write

A =


vT

vTP
vTP 2

...
vTPN−1

 (12)

where P is a (circulant!) matrix that circulantly shifts the elements of vT

around:

P =


0 1 0 ... 0
0 0 1 ... 0
...

. . .
. . .

. . . 0
0 0 0 ... 1
1 0 0 ... 0

 (13)
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Take an arbitrary column of F from above. Let’s call it uj . What is the action
of P on this column? It too just circulantly shifts the column (when P acts on
columns, it shifts them backwards). That is

(Puj)k =
e2πi

j(k+1)
N

√
N

= e2πi
j
N (uj)k. (14)

Due to the same modular arithmetic we made use of above, you can apply this
at any k (and j). Applying this recursively, we can see that

Pnuj = e2πi
jn
N (uj). (15)

In other words uj is an eigenvector of Pn with eigenvalue e2πi
jn
N . This means

that

Auj = (vTuj)



1

e2πi
j
N

...

e2πi
jn
N

...

e2πi
j(N−1)

N


= (vTuj)uj . (16)

We have therefore shown that uj (arbitrary j) is an eigenvector of arbitrary
circulant A with eigenvalue vTuj .

4 Practical results

The practicality of this result lies in the fact that vTuj is the jth discrete Fourier
mode of the vector vT . Due to the fast fourier transform (FFT), this means
that circulant matrices are diagonalizable in O (N logN), by just FFTing the
first row. Writing multiplication by A in terms of FAF †, but taking advantage
of FFTs, essentially implements a fast convolution via FFT (as advertised by
wikipedia). If A is full rank (no nodes in the FFT of its first row), then one
can also implement a fast deconvolution with the kernel that A represents by
instead applying A−1 via FFT.
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