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Suppose we have some data, d, that are i.i.d. Gaussian distributed with true mean, µ, and true
variance σ2

true. Suppose that we are interested in the unknown mean of this distribution, but for
whatever the reason are convinced that the variance is exactly σ2

assume not necessarily equal to σ2
true.

Suppose then we adopt a prior on the mean parameter that is Gaussian with some mean, µprior, and
variance σ2

prior. These assumptions imply that our posterior distribution for the mean is Normal:(
µ|d, σ2 = σ2

assume

)
∼ N

(
µpost, σ

2
post

)
(1)

where N is the number of data, 1 is a vector of ones,

σ2
post =

(
N

σ2
assume

+
1

σ2
prior

)−1

(2)

and

µpost = σ2
post

(
1T d

σ2
assume

+
µprior

σ2
prior

)
(3)

If one conducted many such experiments, an interesting quantity would be, what is the scatter
in the posterior means, and how does that compare to the width of the posterior distribution of
any of the experiments. The latter of these two quantities is independent of the data draw, but the
former is determined by the data in a simple way. Mathematically, this can be represented in terms
of squared errors:

u2 ≡ E
[
(µpost − µ)

2
]
d|µ,σ2=σ2

true

(4)

where the expectation is taken over the true data generating distribution.
Expanding Equation 4, we have

u2 = E
[
µ2
post

]
d|µ,σ2=σ2

true

− 2µE [µpost]d|µ,σ2=σ2
true

+ µ2 (5)

The second term is easy, noting that E[d]d|µ,σ2=σ2
true

= µ1, and 1T1 = N

E [µpost]d|µ,σ2=σ2
true

= σ2
post

(
Nµ

σ2
assume

+
µprior

σ2
prior

)
. (6)
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The first term is a bit more complicated, but expanding in terms of the definition of µpost, we have

E
[
µ2
post

]
d|µ,σ2=σ2

true

= (σ2
post)

2

(
E

[
1T ddT1

(σ2
assume)

2

]
d|µ,σ2=σ2

true

+ 2
µprior

σ2
prior

E

[
1T d

σ2
assume

]
d|µ,σ2=σ2

true

+

(
µprior

σ2
prior

)2) (7)

We’ve already dealt with the second of these terms. To do the first term, note

E
[
ddT

]
d|µ,σ2=σ2

true
= σ2

trueIN + µ211T , (8)

where IN is the identity matrix in N dimensions. Combining all this we get

u2 = (σ2
post)

2

 Nσ2
true

(σ2
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2
+

N2µ2

(σ2
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2
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priorσ

2
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+

(
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σ2
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)2
−2µσ2

post

(
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σ2
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+
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σ2
prior

)
+µ2

(9)
We can collect some terms here to clean things up. We can rewrite this as

u2 =

(
σ2
post

σ2
assume

)2

Nσ2
true + (σ2

post)
2

(
Nµ

σ2
assume

+
µprior

σ2
prior

)2

− 2µσ2
post

(
Nµ

σ2
assume

+
µprior

σ2
prior

)
+ µ2, (10)

and we can further rewrite it as

u2 =

(
σ2
post

σ2
assume

)2

Nσ2
true +

(
E [µpost]d|µ,σ2=σ2

true
− µ

)2
. (11)

Let’s play with this expression a bit to make sense of it. First, note that it has two terms. The
first term depends on the true noise variance, the second term does not (cf. Equation 11). This
second term results from biases in the prior. One can make this bias disappear in two ways: by
guessing µprior = µ (or enforcing it for the sake of theoretical study!), or by taking the limit of a flat
prior, σ2

prior → ∞.
In the flat prior limit, the first term reduces to

lim
σ2
prior→∞

(
σ2
post

σ2
assume

)2

Nσ2
true =

σ2
true

N
. (12)

In particular, in the noiseless case, the mean will be achieved exactly (which makes sense, because
inspecting the data vector would let you read off the mean). If µpost is being estimated via monte
carlo (e.g. post-processing an MCMC chain), then there may be some sample variance associated
with the monte carlo error, and one may see some scatter, but at some drastically reduced level
based on how many independent monte carlo samples are being used.
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